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Abstract. This report analyzes two stocks, AAPL and AMD, using
data from Yahoo Finance. Daily returns are computed for both stocks.
For AAPL, the report examines the w-day Exponential Moving Average
(EMA), Cumulative Distribution Function (CDF), and Probability Den-
sity Function (PDF). Mean-Variance Analysis is then applied to AAPL
and AMD to determine the optimal portfolio. Association rules are stud-
ied, focusing on four metrics: confidence, geometric mean, arithmetic
mean, and rule power factor. The report concludes that geometric mean
and rule power factor are better suited to assess association rule quality,
as they consider both rule frequency and accuracy.
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1 Data Preprocessing

In this section, I choose the AAPL stock [1] and AMD stock [2] in Yahoo Finance
as the data source. Then I compute the daily return of these two stocks with the

given formula:
X(t)=In {S(f(f)l)} (1)

2 Exponential Moving Average

In the context of financial data analysis, an exponential moving average (EMA)
is often used to smooth out fluctuations and highlight trends in time-series data.
In this section, I compute AAPL’s w-day EMA with the given formula:

M(t,w)=aS(t)+ (1 —a)M(t—1,w) (2)

Then I plot the M (¢,w) for w = 30, 100 and 300 when ¢ = 1/w and a =
2/(w+ 1) in Fig. 1 and Fig. 2 respectively.
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Adjusted Closing Price and EMA when @ = 1/w for AAPL

—— Adjusted Closing Price
—— EMA when a = 1w, w=30
—— EMA when a = 1/w, w=100
—— EMA when a = Ljw, w=300
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Fig.1: M (t,w) for w = 30, 100 and 300 when a = 1/w

Adjusted Closing Price and EMA when a = 2/(w + 1) for AAPL

—— Adjusted Closing Price

—— EMA when a = 2f{w+ 1), w=30
—— EMA when & = 2/(w + 1), w=100
—— EMA when a = 2/{w+ 1), w=300
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Fig.2: M (t,w) for w = 30, 100 and 300 when a = 2/(w + 1)

By observing the two figures, it becomes clear that the window length w and
smoothing constant a play a significant role in determining the performance of
EMA as a smoothing filter for financial data.

A longer window length w can provide more smoothing, resulting in a reduced
impact of noise or short-term fluctuations in the data. However, an extended
window length can introduce more lag, which in turn reduces the responsiveness
of the filter to changes in the data.

The weight assigned to recent versus older data points in the EMA calcu-
lation is determined by the smoothing constant (alpha). A smaller alpha value



HKUST 3

gives more weight to older data points, producing a smoother output, while a
larger alpha value gives more weight to recent data points, resulting in a more
responsive output. Therefore, it is clear that EMA fluctuations with the same
window length w are more noticeable when a = 2/(w + 1) than when a = 1/w.

3 Cumulative Distribution Function

Regard the values of X(¢) as realizations of a random variable X. Plot the
cumulative distribution function (CDF) of X in Fig. 3.

Cumulative Distribution Function of Daily Return Rate
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Fig. 3: Cumulative distribution function Fx (z)

3.1 Logistic Funcion

Fit Fx(z) with the logistic function:

- 1
1 _|_67b(x7r*)

L(z) 3)

According to this fomular, we know L(z*) = 0.5. By fitting the fomular with
python, we know the empirical z* is 1.09 x 10~2 and the empirical b is about
90.70. So we can calculate L (0) = 22.62. Then plot empirical L(z) atop Fx(x)
in Fig. 4.
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Fitted Logistic Function to Empirical CDF
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Fig. 4: Empirical L(x) atop Fx(x)

3.2 Kolmogorov-Smirnov Test

We can evaluate the goodness of fit of L(z) to Fx(z) using the Kolmogorov-
Smirnov test. Our null hypothesis is that L(z) fits Fx(x) well. To test this
hypothesis, we define D as the maximum deviation between Fx(x) and L(z),
i.e., D = maxx|Fx(x) — L(z)|. If VND > na, we reject the null hypothesis
at a significance level a. Here, the threshold 7, is determined by solving the
following equation:

V21 { (2k — 1)%2]
exp |——————|=1—-« (4)
Ta ,; 812

By performing the Kolmogorov-Smirnov test, we obtain a p-value of 0.007,
which is less than the significance level of 0.05. As a result, we reject the null hy-
pothesis in favor of the alternative, suggesting that there is insufficient evidence
to support the claim that L(z) fits Fx () well.

4 Probability Density Function

On one hand, we can estimate X'’s PDF fx(z) with the derivative of its fitted
CDF. On the other hand, we can estimate fx(x) with a k-bin normalized his-
togram, where each bin is h = (maxz — min«)/k units wide. In general, the i
th bin measures the frequency of = € [minz + (i — 1)h, minz + ih).

Firstly, we can derive the formula of L' (z) as follows:

roy bexp [—b(z — z*)]
L) = 1+ 2xexp[—b(x — 2*)] 4+ exp [-2b(x — x*)]

()

We can plot L’ (x) in Fig.5 and compare it with five histograms generated using
different numbers of bins. Specifically, we plot histograms with k£ values of 20,
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100, and 400, as well as histograms with k values determined using the Sturges
formula and the Freedman-Diaconis formula. By observing Fig.5, we can see that
the number of bins can significantly affect the appearance and interpretation of
the resulting histogram.

Firstly, the number of bins directly affects the width of the bins in the his-
togram. A smaller number of bins will result in wider bins, while a higher number
of bins will result in narrower bins. Secondly, the number of bins also affects the
representation of the data distribution in the histogram. A small number of
bins may not capture important features of the data distribution, such as mul-
tiple modes or skewness. In contrast, a large number of bins can introduce noise
and overemphasize minor fluctuations in the data. Therefore, choosing an ap-
propriate number of bins is crucial in generating an accurate and informative
histogram.
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Fig. 5: L' () and histograms with different bins

5 Descriptive Statistics

In this part, we calculate the daily return of the AMD stock. Based on the data,
we have computed the following all-time statistics for the two return rates:

— Means: p; = 0.000884 and po = 0.000272

— Variances: o = 0.000676 and o3 = 0.001553

— Sharpe ratios: 73 = 0.726745 and v, = 0.393288
— Covariance: 015 = 0.000374

Then repeat last step using only the data on the K most recent days for K
= 30, 100, 300. The result is as follows:

1. When K = 30, the means, variances, Sharpe ratios and covariance are:
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— Means: g1 = —0.000281 and pe = —0.002414
— Variances: o7 = 0.000676 and o3 = 0.001553
— Sharpe ratios: v; = —0.089444 and v, = —0.743423
— Covariance: 15 = 0.000588
2. When K = 100, the means, variances, Sharpe ratios and covariance are:
— Means: g1 = —0.000761 and pe = —0.000577
— Variances: o7 = 0.000568 and 03 = 0.001349
— Covariance: o195 = 0.000635
— Sharpe ratios: 73 = —0.369944 and 7, = 0.004296
3. When K = 300, the means, variances, Sharpe ratios and covariance are:
— Means: p; = —0.000281 and pe = —0.002414
— Variances: 07 = 0.000475 and o3 = 0.001440
— Covariance: o159 = 0.000588
— Sharpe ratios: 73 = —0.089444 and v, = —0.743423

6 Mean-Variance Analysis

We would like to perform a mean-variance analysis on X;(t) and Xo(t) and
accordingly construct the minimum-risk portfolio S,(t) = pSi(t) + (1 — p)Sa(t).
For some fraction of investment p € [0,1]. We can determine the value of p
according to the following formula:

_ 02+ 03 — 2019

(u1 — us)”
=2 [ugo? + u103 — (w1 + uz) 012]

b= 5 (6)
(u1 — up)
u%a% + u%a% — 2U1U2012
(w1 —us)”

b . . . ) b?
At u; = —_—, the portfolio possesses the minimum risk o, = ¢ — — and

y 2a 4a
p= Hp M. Using these formulas, we can get p =~ 0.7961. Using this value of

M1 — M2

p, we can plot the resultant portfolio S, (t) atop Si(¢) and Sa(t) in Fig. 6.
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Fig. 6: The resultant portfolio S,(t) atop S1(t) and S2(t)



6.1 A K-Day Analysis

As the relevance of old data should decay, it is more sensible to consider the
stock’s performance on the K most recent days only. In other words, we only
infer information from {X,—; o(t — 7+ 1) | 7 € [1, K]} at evey moment ¢. Hence,
the fraction of investment, now denoted by p(¢, K), varies with time and depends
on K. Complete the following tasks for K = 30,100, 300. Then plot p(t, K) for
K = 30,100,300 in Fig. 7, plot the resultant portfolio S,(t) atop S1(t) and Sa(t)
for K = 30,100,300 in Fig. 8, plot S,(¢,k)’s K-day Sharpe ratio R,(t, K') for

K = 30,100,300 in Fig. 9.

HKUST

P(LK)
— K=30
1000 2000 3000 4000 5000 6000
— K =100
1000 2000 3000 4000 5000 6000
— K =300
1000 2000 3000 4000 5000 6000

Fig. 7: p(t, K) for K = 30,100, 300

Sp(t, K) atop S1(t) and Sa(t)
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Fig. 8: The resultant portfolio S,(t) atop S1(t) and S2(t)
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K-day Sharpe ratio ypl(t, K)
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Fig.9: S,(t, k)’s K-day Sharpe ratio R,(t, K) for K = 30,100,300

By observing Fig.7, we can see that the fluctuations of p(t, K) decrease as
the value of K increases. This is because more recent data is more relevant to
the current stock price and contributes to more violent and frequent fluctuations
in p(t, K). In other words, as the value of K decreases, portfolios will respond
more frequently to the market. This can be verified by observing the other two
figures. In Fig.8, the resultant portfolio S,(t) when K = 30 has the best per-
formance since it is more sensitive to the market. In Fig.9, R, (¢,30) fluctuates
more violently than R, (¢,100) and R, (¢, 300), which is consistent with the ob-
servation in Fig.7. However, in another view, the more frequent fluctuations in
p(t,30) means that the portfolio takes higher risks in pursuit of higher returns
compared to the other two portfolios.

7 Digitization of Time Series

Let’s focus on the first stock AAPL. We can digitize X (¢) as Y (¢) using three
alphabets: D for ”down”, U for "up”, and H for "hold”. The following rules can
be used:

D [X(t) < —¢]
V()= U [X(t) > +¢] (7)
H ( otherwise)

Here, we will use e = 0.002. We can then calculate the probability P[Y (¢) = y]
for y € D, U, H. The result is as follows:

— U (up): 0.471409
— D (down): 0.424733
— H (hold): 0.103858
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Then I calculate the conditional probability P [Y (¢t + 1) = y1 | Y () = y2] for all
nine possible pairs of (y1,y2) € {D,U,H} x {D,U,H}. The result is as follows:

— DD: 0.1772609819121447
— DU: 0.2053402239448751

— DH: 0.04220499569336779
— UD: 0.20378983634797587
— UU: 0.2186046511627907

— UH: 0.04892334194659776
— HD: 0.043583118001722654
— HU: 0.047545219638242896
— HH:0.012747631352282515

8 Association Rules

We would like to find out a five-day pattern A that associates well with an
immediate down (D). Formally, a rule R can be written as

R:A={Y(t—4),Y(t-3),Y({t—2),Y(t-1),Y{t)} > Y(t+1)=D (8

There are 3° = 243 possible rules that could be used to digitize the AAPL stock’s
price movement.

To analyze the stock’s behavior, we can divide Y (¢) into the ”"past” and the
"future” at t = M ~ 3N /4, where N is the total number of days. By examining
the history of the previous 3N /4 days, we hope to identify good association rules
that can be applied to the coming N/4 days to make a profit.

To identify the best association rules, we can calculate the confidence of all
243 rules in the past and report the top 10 rules with the highest confidence,
denoted as {Rcony}p as follows:

- DDDHH
- DUHHD
— DHDHU
— DHUHD
- DHUHH
- DHHDH
— DHHUD
— DHHUU
- UDDHH
- UDHDH

9 Verification of Association Rules

We may verify a rule’s goodness by doing a betting experiment with the future
data like this: as time passes, we bet on an immediate down every day. If a down
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indeed comes out, we earn $u, and we ascribe the profit to the just appeared five-
day pattern A and its rule R : A — D; otherwise, we lose $v, and we similarly
ascribe the loss to the just appeared pattern.

Consider © = 1 and v = 0 for simplicity. In this regard, a rule’s profit is
merely the number of times that it works. I record the profits due to all the 243
rules, then report the 10 most profitable rules { Rexpt } 7 as follows:

— DUUDD (Work times = 21)
— UDDDU (Work times = 21)
— UDUUD (Work times = 21)
— UUDUU (Work times = 21)
— UUUUU (Work times = 20)
— DDDUD (Work times = 19)
— DUUUD (Work times = 18)
— DDUUU (Work times = 17)
— DUDDU (Work times = 17)
— DUUUU (Work times = 17)

Upon observation, we found that there are no association rules in {Rconf }p
that share the same pattern with {Rexpt } 7 .We computed the Pearson correlation
coefficient between a rule’s confidence in the past and its profit in the future and
found it to be approximately 0.1178. Although this value is not zero, it is still
considered small, which means that the confidence of a rule is not associated
with {Rexps } s well. This may be due to that {Reons}p does not account for the
frequency of a rule’s pattern appearing in the whole dataset. In other words, a
rule may have a high confidence, but its pattern may appear very rarely in the
dataset. When we apply such a rule to future data, it may not work well since
the pattern is not frequent enough to make accurate predictions. Therefore, it
is important to consider the frequency of a rule’s pattern in the dataset and
evaluate its effectiveness in predicting future outcomes.

10 Further Analysis of Association Rules

Let us analyse the betting experiment more carefully. One can prove that a rule’s
profit 7 is related to its future support s; and future confidence ¢y via

T~ sy lucy —v(l—cy) 9)

where the proportionality depends on the length of the future. This matches our
intuition: a rule is good if it is both frequent (thus a high support) and accurate
(thus a high confidence). As v = 0, the formula becomes m ~ sfcy.

The remaining problem is that we can never know sy and ¢y but are only
able to estimate them with the rule’s past support s, and past confidence cp,
which may hugely deviate from their future counterparts.
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10.1 Geometric mean and Arithmetric mean

Let us first boldly assume that all rules obey s, = sy and ¢, = cy, yielding
T ~ 5pCp. Since the ranking of m does not change when we take a square root on
the right-hand side, we may predict a rule’s goodness with the geometric mean
between its support and confidence. Out of curiosity, we may also guess whether
their arithmetic mean is useful.

Firstly, report the 10 rules with the highest geometric mean between support
and confidence in the past as {Rgeo }p:

— DDUDU: Geometric mean: 0.1109
— DUDUU: Geometric mean: 0.1109
— UDDDU: Geometric mean: 0.1096
— DDUUD: Geometric mean: 0.1083
— DUDDU: Geometric mean: 0.1083
— UDUUD: Geometric mean: 0.1083
— UDDUU: Geometric mean: 0.1056
— UDDUD: Geometric mean: 0.1056
— UDUDD: Geometric mean: 0.1043
— UUDDU: Geometric mean: 0.1043

Secondly, report the 10 rules with the highest arithmetic mean between sup-
port and confidence in the past as {Rqri}p:

— UUHHU : Arithmetic mean: 0.5004
— HDHDU : Arithmetic mean: 0.5004
— DDDHH : Arithmetic mean: 0.5003
— DUHHD : Arithmetic mean: 0.5003
— DHUHD : Arithmetic mean: 0.5003
— UDHDH : Arithmetic mean: 0.5003
— UUDHH : Arithmetic mean: 0.5003
— HDDHD : Arithmetic mean: 0.5003
— HDUUBH : Arithmetic mean: 0.5003
— HHDDD : Arithmetic mean: 0.5003

Then we can find that for {Rgeo}tp and {Reazpt }

— The rule UDDDU is in both dictionaries
— The rule DUDDU is in both dictionaries
— The rule UDUUD is in both dictionaries

And we can also find that {Rsri}p and {Rezpt}¢ do not share any rules. So it
seems that the geometric mean assesses a rule better than the arithmetic mean
and confidence.
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10.2 A Gneralized Mean

Now we will account for the discrepancy between the past and the future, so
sp # sy and ¢, # cs. We are pessimistic, so we expect that a rule’s confidence
depreciates over time, but we are also optimistic, so we expect that a more
confident rule in the past remains more confident in the future.

The two assumptions combine to suggest cy = ¢;' for some m > 1. With the
scale of m maintained, we may formulate m with a generalized mean
m)u#m A 1-A

=S, C

’/T:(SpC pCp

P

for some tuning parameter A = 1/(1 +m) € [0,1]. As X rises, the emphasis
of spci™* smoothly slides from support to confidence. When X strikes 1/3,m =
Y/ spcs = Ty, where 1, is the rule’s rule power factor (RPF).

Then, report the 10 rules with the highest RPF in the past as {Rrpr}p:

— UDUUD : RPF: 0.1892
— DUDUU : RPF: 0.1877
DUDDU : RPF: 0.1866
DDUDU : RPF: 0.1862
— UDDDU : RPF: 0.1848
— DDUUD : RPF: 0.1834
UDUDD : RPF: 0.1790
UDDUU : RPF: 0.1774
— UDDUD : RPF: 0.1724
— DDDDU : RPF: 0.1710

Then we can find that for {Rrpr}, and {Rezpt}s:

— The rule UDUUD is in both dictionaries
— The rule DUDDU is in both dictionaries
— The rule UDDDU is in both dictionaries

Determining the optimal value for the rule power factor (RPF) A that best
predicts a rule’s goodness can be challenging, as it may depend on the specific
task and dataset. The choice of RPF can significantly impact the performance
of the association rule mining algorithm. However, what constitutes an optimal
value may vary depending on the characteristics of the data and the task at
hand. Typically, a higher RPF prioritizes rule confidence over support, while a
lower RPF prioritizes support overconfidence. The appropriate value of RPF for
a given problem may depend on factors such as the dataset’s complexity, the
number of items involved, and the desired balance between rule support and
confidence.
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