Predicting Air Quality In India Based On Time Series Model

December 4, 2022

1 Introduction

Air pollution is one of the major issues threatening human’s health. In order to implement corresponding
police and measures in different period to ease such negative impaction, the quantification and prediction of
air pollution is of great importance. Because AQI index has already been invented to quantify air pollution,
the purpose of this article is to predict AQI base on Time Series Models. We firstly built a SARIM A model
to train and predict Indian AQI, then constructed an Intervention Model to modify this SARIM A model to
adjust to the significant impact of COVID — 19. According to our experiment, Intervention Model provides
a great improvement to prediction accuracy, so the combination of Intervention Model and Origin SARIM A
Model is desirable.The MAPE of Intervention Model equals to 26%.

2 Background and Data Description

2.1 Background

The air quality of India represents significant seasonal pattern before 2020. After the outbreak of COVID—19,
Indian Government implemented a nationwide lockdown restriction from 24 March 2020 to 30 May 2020, which
inhibited industrial and traffic movement, and thence decrease the level of air pollution in that period.

2.2 AQI

AQI index indicates the level of air pollution in certain area and time. It is computed hourly based on 7 types
of air condition data. The detailed computation rules is presented as follows:

(1) The AQI calculation uses 7 measures: PM2.5, PM10, SOz, NO,, NHs, CO and Os.

(2) For PM2.5, PM10, SO2, NO, and N Hjs the average value in last 24-hrs is used with the condition of
having at least 16 values.

(3) For CO and O3 the maximum value in last 8-hrs is used. Each measure is converted into a Sub-Index
based on pre-defined groups.

(4) Sometimes measures are not available due to lack of measuring or lack of required data points.

(5) Final AQI is the maximum Sub-Index with the condition that at least one of PM2.5 and PM10 should
be available and at least three out of the seven should be available.
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Figure 1: AQI Calculation Stream

2.3 Data Content

The dataset contains air quality data and AQI (Air Quality Index) at daily level of various stations across
multiple cities in India, from April 5, 2015 to July 5, 2020.
Central Pollution Control Board, which is the official portal of Government of India. Nevertheless, the biggest
drawback of this dataset is value missing. As we further examinate this dataset, it turns out that there are
five cities containing acceptable amount of missing data (Fig. 1): Bengaluru, Chennai, Delhi, Hyderabad and
Lucknow. Therefore, we decided to transform daily value to weekly value using the mean of AQI within a
week, fill the missing data base on Interpolate technic, then calculated the mean of AQI of these five cities to
represent the overall AQI of India in each week. A time series graph of Indian Weekly AQI is shown in (Fig.

1), indicating a significant seasonal pattern.

R )
;xS 0 \)\@@ @@ ’
Nl

N o @
S
N & & &

Figure 2: Data Integrity of Different Cites

It has been made publicly available by the
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Figure 3: Time Plot of Indian AQI index

We drew this plot by msno.matrix in Python, a useful tool to check the data completeness. In Fig. 2,
each vertical column represents one corresponding city, and data completeness of a city is shown by its vertical
column. Within a vertical column, the existence of a data is shown by color, in time series from the top to the
bottom. The top of a vertical column represents the start date, April 5, 2015, and similarly the bottom of a
vertical column represents the end date, July 5, 2020. If the data exist in a certain day, it is shown black, while
it is shown white (blank) if it doesn’t exist. More specifically, if there is a blank part of a vertical column,
that means there are no existing values in the corresponding period of that part. For the five cities mentioned
above, few blank/white parts are shown in their corresponding column, indicating that these five cities don’t
have a large amount of consecutive missing data, which is desirable for Interpolate Data Filling.

3 Model Construction I

An auto-regressive integrated moving average, or ARIMA, is a statistical analysis model that uses time series
data to either better understand the data set or to predict future trends. A problem with ARIMA is that
it does not support seasonal data which is a time series with a repeating cycle. ARIMA expects data that
is either not seasonal or has the seasonal component removed, e.g. seasonally adjusted via methods such as
seasonal differencing.In our first model we focus on SARIMA model.

3.1 Log Transformation

After the data pre-processing, we computed the mean of five cities’ daily AQI (Bangalore,Chennai,Delhi,Hyderabad
and Lucknow)as the sample. We directly performed a Dickey-Fuller test on this time series and found that
the null hypothesis can be rejected under 95% significance level (null hypothesis is the original data-set is
non-stationary), and under 99% significance level we accept null hypothesis.

Test Statistic: -3.333672
p-value: 0.013439

Lags Used: 0.000000

Number of Observations Used: | 274.000000
Critical Value (1%): -3.454444
Critical Value (5%): -2.872147
Critical Value (10%): -2.572422

Table 1: Dickey-Fuller Test for Log Transformation



From the table 1, It is a bit reluctant for original data to pass the stationarity test. At the same time, we
plotted the time series image of the original data and the log transformed data respectively.
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Figure 4: Comparison between Original data and log transformed

It is apparent that the variance of the data after log transformation is smaller than original, which can
effectively reduce the heteroscedasticity. Therefore, we used log-transformed data in subsequent model pro-

cessing.

3.2 Seasonal Difference
We began with drawing the ACF and PACF diagrams of the undifferentiated data.From below figures, the

data has an extremely strong seasonality, so we need to make seasonal difference.
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Figure 5: ACF and PACF for Origin Data

When both the seasonal difference and the first order difference are utilized,the result after changing
the order is still the same. However, if the seasonal characteristics of the data are relatively strong, we
recommended performing seasonal difference first, because sometimes the data after seasonal difference is
stable enough leading to no need for subsequent differentiation. If we do the first order difference primarily,
we will still need to do a seasonal difference. after seasonal difference,we do Augmented Dickey-Fuller test on
the data. Then, we noticed that under 99.999% significance level we should reject null hypothesis.

Test Statistic -4.168751
p-value 0.000744
Lags Used 2.000000
Number of Observations Used | 220.000000
Critical Value (1%) -3.460428
Critical Value (5%) -2.874769
Critical Value (10%) -2.573821

Table 2: Dickey-Fuller Test for log transformation after seasonal difference

3.3 Model Construction

We can summarize three models from ACF and PACF (figure 6):

1. SARIMA(0,1,1) x (0,1,1)52 (ACF cut off, PACF decay quickly)
2. SARIMA(2,1,0) x (1,1,0)52(PACF cut off ,ACF decay quickly)
3. SARIM A(2,1,1) x (1,1,1)52(PACF and ACF noth decay quickly)



Autocorrelation

025
500 po .t Poo 210,00 Loolaue 2 n[rTr PP X JK SO X I SOV S SO A X 7 P
1+l “L'i'lklt Ll"u.-lpl'x U R R S B 0 MR R N B

0 20 40 60 8 100 120

Partial Autocorrelation

e do 0l see s te 4est RN S
- lr' T l 1320 2 S ) R T 1Y

000 PR PP { JPPO & 1) te
“LL 1Y Ll (3] 1-; ll 3 l TW

Figure 6: ACF and PACF after seasonal and 1st difference

In addition, We have determined all possible combinations of the parameters of SARIM A(p,d,q) X
(P,D,Q)s (p is the number of autoregressive terms, d is the number of nonseasonal differences needed for
stationarity, and ¢ is the number of lagged forecast errors in the prediction equation; the term (P, D, Q) gives
the order of the seasonal part,sis the lag term).

We used itertools package to traverse all possible combinations, using AIC, BIC and HQIC as their indicators
to test the goodness of the model. We demonstrate the top five in table3.

Parameters AIC BIC HQIC Mean
SARIMA(0,1,1) x (0,1,1)52  -206.946806 -197.205733 -203.000839 -202.384459
SARIMA(1,1,2) x (0,1,1)52 -207.073804 -194.085708 -201.812516 -200.990672
SARIMA(0,1,2) x (0,1,1)52 -206.932219 -193.944123 -201.670930 -200.849091
SARIMA(1,1,1) x (0,0,1)52 -206.489096 -193.501000 -201.227807 -200.405968
SARIMA(2,1,0) x (0,0,1)52 -205.564055 -192.575959 -200.302766 -199.480927

Table 3: Top 5 results

From the table above, it is obvious SARIMA(0,1,1) x (0,1,1)s2 is the best one. After we determine
the order of the model, we based on statsmodels.api package to estimate the value of each parameter. The
tabulation illustrates each parameter is significant since its P-value close to zero.This also proves that our
model is reasonable.

Dep. Variable: log India

Model: SARIMAX(0,1,1) x (0,1,1)52
No. Observations: 243

Log Likelihood 106.473

AlC -206.946806

BIC -197.205733

HQIC -203.000839

Table 4: SARIMAX Results



coef  std err z P>z [0.025 0.975]
ma.Ll -0.5250  0.063 -8.331  0.000 -0.648 -0.401
ma.S.L52 -0.8464 0.293 -2.884 0.004 -1.422 -0.271
sigma?2 0.0144  0.004 4.101 0.000  -0.008 0.021

Ljung-Box (L1) (Q): 0.4 Jarque-Bera (JB):  3.18
Prob(Q): 0.51 Prob(JB): 0.20
Heteroskedasticity (H): 1.29 Skew: -0.08
Prob(H) (two-sided): 0.31 Kurtosis: 3.62

Table 5: Model Summary

3.4 Model Prediction

According to 3.3, we trained the model on 243 samples, and the remaining 29 samples were used as the test
set. The orange line in the figure below is the value we fitted, and the blue line is the true value. From the
figure, the predicted values from December 2019 to March 2020 are good as they close to true values. However,
after March 2020, the fitted values are always greater than the true values, so we guess it is influenced by the
epidemic. Then, we utilised the intervention model to make predictions.
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Figure 7: Forecast on test data

3.5 Residual Test

Finally, we test residual. The “residual” in a time series model are what is left over after fitting a model.
For many (but not all) time series models, the residuals are equal to the difference between the observations
and the corresponding fitted values: e; = y; — y; From the following figures,it is obvious that the residual
corresponds to white noise.
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4 Model Construction I1
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Figure 9: Forecast value of Model I

Referring to the result from the Model I, the model’s performance seemed great in the beginning. But things
changed from around March 2020 when the prediction error became much larger and unacceptable. So, what
happened in India that time?

In fact, we found that due to the COVID-19, India began a 21-day national lockdown on March 25, 2020. 21
days later, the lockdown still not be cancelled. On April 11, the Indian government decided to extend the
national foot ban until May 3. And then the lockdown of the controlled area was extended to October 31, 2021.
In general, since March 2020, India has been almost completely closed. Many states in India implemented a
complete lockdown, and states that did not implement blockade also restricted the movement of people in the
state.

We think the lockdown is an intervention event for the air quality, but our model did not capture this infor-
mation, which is the main reason that result become such poor. So, we tried to fit a intervention model to get
better result.

4.1 Introduction to intervention model

The intervention model is based on the basic time series model, taking the intervention event into consideration,
adjusting and combining the time series model, and finally establishing a complete and accurate forecasting
model. The most important issue in the establishment of an intervention model is to quantify the effect of
intervention.

4.1.1 Intervention model

Consider a simple single intervention. After proper transformation, the time series can have a form like:

}/t = My + Nt (1)
where m; represents the change of the mean function, and the model of Ny is the ARIMA process (or SAIMA
process). We assume that the time series got intervention at time T, which means m; just equal to 0 if t < T
4.1.2 Representations of intervention variables

There are two representations of intervention variables: One is the continuous intervention variable, which
means that the time series is subject to intervention at time T, and the sequence is continuously affected after



the intervention occurs. Then the intervention variable is represented by a step function:

1, t<T
Sf=<" 2
¢ {O, t>T @)

The second is a transient intervention variable, which means that the time series is interfered at a certain
moment, and the intervention only has an impact at that moment. Then the intervention variable is expressed
by a unit impulse function:

1 =T
PtT: ! (3)
0, t#T

The second is a transient intervention variable, which means that the time series is interfered at a certain
moment, and the intervention only has an impact at that moment. Then the intervention variable is expressed
by a unit impulse function:

4.1.3 Model for intervention variables

Generally, we can build an ARIMA model to fit {m,}:

- W(B) T W(B) T
me=5m s S @

4.1.4 Modeling process
The specific steps of building intervention model modeling are as follows:

(1) Use the time series data before the intervention to establish a time sequence model(Y;*/"), and then
obtain the predicted value of the time sequence when no intervention event occurs.

(2) Build Model for intervention variables. Using
my = )/tobserved _ Y/tbefore“ > T (5)
to get the value of the intervention sequence. And then build ARIMA model for it.

(3) Calculate the data after excluding the influence of the intervention and obtain the sequence of excluding
the influence of the intervention:
Nt _ }/tobserued _ mt (6)

And then build a univariate time series model for it.

(4) Obtain the final intervention analysis model

Yt:mt—i—Nt (7)

10



4.2 Intervention model for Indian AQI
4.2.1 Building model based on the data before the intervention
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Figure 10: Log transformed Data
Since the Model I used the data from 2015-04-05 to 2019-12-01 which have not met intervention. So we can

just use the model I as the model based on the data before the intervention.
We got the model:

=l D=2y elore — o, — 0.5250 % €4y — 0.8464 % e;_52 + 0.5250 * 0.8464 % ¢;_s53 (8)
4.2.2 Build Model for intervention variables

Intervention variables

— India_AQI

Figure 11: Intervention variable graph
Stationarity transformation Since ACF and PACF decay quickly, we think this time series data is sta-

tionary. Thus, we do not do any transformation of it.

11
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Figure 12: ACF and PACF

Model specification, Fitting and diagnostics For the ACF and PACF, there are two ways to think
about it:

Firstly we can think the ACF cut off at lag 1 and PACF decay quickly, which lead to MA(1) model. Secondly
we can also think the PACF cut off at lag 1 and ACF decay quickly, which lead to AR(1) model. We tried
both model, the result was as blow:

SARIMAX Results

Dep. Variable: y No. Observations: 23
Model: SARIMAX (1, 0, 0) Log Likelihood -93.600
Date: Sat, 04 Dec 2021 AIC 193.199
Time: 15:42:53 BIC 196.606
Sample: 01-05-2020 HQIC 194.056
- 06-07-2020
Covariance Type: opg
coef std err z P>|z| [0.025 0.975]
intercept -7.1109 5.103 -1.393 0.163 -17.113 2.891
ar.L1l 0.6860 0.197 3.489 0.000 0.301 1.071
sigma2 195.1121 68.442 2.851 0.004 60.969 329.256
Ljung-Box (L1l) (Q): 0.26 Jarque-Bera (JB): 0.55
Prob(Q): 0.61 Prob(JB): 0.76
Heteroskedasticity (H): 0.96 Skew: -0.26
Prob(H) (two-sided): 0.95 Kurtosis: 2.46

Figure 13: AR(1) model

12
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Figure 14: Residual Test

Based on the LB test result, the P value is large. At the 0.05 level, we have no reason to reject the null
hypothesis, that is, it can be considered that there is no correlation for the residual of the AR(1) model.
Besides, the Scatter plot and ACF of residual all indicate that the it is a white noise. And the distribution of
residual is very close to normal based on the QQ plot.

SARIMAX Results

Dep. Variable: y No. Observations: 23
Model: SARIMAX(0, 0, 1) Log Likelihood -94.878
Date: Sat, 04 Dec 2021 AIC 195.755
Time: 15:43:10 BIC 199.162
Sample: 01-05-2020 HQIC 196.612
- 06-07-2020
Covariance Type: opg
coef std err z P>|z| [0.025 0.975]
intercept -36.1028 5.108 -7.068 0.000 -46.114 -26.091
ma.Ll 0.5486 0.223 2.455 0.014 0.111 0.986
sigma2 220.6996 94.658 2.332 0.020 35.173 406.226
Ljung-Box (L1) (Q): 0.52 Jarque-Bera (JB): 1.11
Prob(Q): 0.47 Prob(JB): 0.57
Heteroskedasticity (H): 0.94 Skew: -0.38
Prob(H) (two-sided): 0.94 Kurtosis: 2.23

Figure 15: MA(1) model

13
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Figure 16: Residual Test

Based on the LB test result, the P value is large. At the 0.05 level, we have no reason to reject the null
hypothesis, that is, it can be considered that there is no correlation for the residual of the MA(1) model.
Besides, the Scatter plot and ACF of residual all indicate that the it is a white noise. And the distribution of
residual is very close to normal based on the QQ plot.

Thus both two model are suitable model. Since the AIC for AR(1) model is a little smaller than MA(1) model,
we finally chose the AR(1) model. For our case, we think COVID-19 is a continuous intervention variable,
thus we use a step function to represent it.

1, t>T
sT=4-"" 9)
0, t<T

Then we got the model for intervention variables:
my = 0.686m;_1 — 7.1109] (10)

The AR form of intervention model means that the intervention may only gradually affect the mean function,
and its full impact can only be fully manifested after a period of time, which is also reasonable for our case.
4.2.3 Build Model for the sequence excluding the influence of the intervention

Stationarity transformation Following the same procedure from Model Construction I, we found after
log-transformation, no-seasonal first order difference and seasonal first order difference, we achieved stationar-

ity.

14
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Figure 18: ACF and PACF of Seasonal Difference Data

Through the scatter chart, we can see that the average value of the data remains stable.data fluctuates

around the average value, and the amplitude of the
quickly.

Model specification, Fitting and diagnostics

fluctuation is relatively stable. ACF and PACF also decay

The patterns of ACF and PACF are very similar to Model

Construction I, after carefully model specification, we still choose SARIM A(0,1,1)(0,1,1)52 to fit the data.

SARIMAX Results

Dep. Variable: clearn No. Observations: 271
Model: SARIMAX(O0, 1, 1)x(0, 1, 1, 52) Log Likelihood 127.743
Date: Sat, 04 Dec 2021 AIC -249.486
Time: 14:44:02 BIC -239.332
Sample: 04-05-2015 HQIC -245.385
- 06-07-2020

Covariance Type: opg

coef std err z P>|z| [0.025 0.975]
ma.Ll -0.5568 0.056 -9.936 0.000 -0.667 -0.447
ma.S.L52 -0.9274 0.557 -1.665 0.096 -2.019 0.164
sigma2 0.0131 0.007 1.960 0.050 3.29e-06 0.026
Ljung-Box (L1l) (Q): 0.52 Jarque-Bera (JB): 3.94
Prob(Q): 0.47 Prob(JB): 0.14
Heteroskedasticity (H): 1.17 Skew: -0.15
Prob(H) (two-sided): 0.50 Kurtosis: 3.59

Figure 19: SARIMA Results of Model II
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Figure 20: Residual Test

Based on the LB test result, the P value is large. At the 0.05 level, we have no reason to reject the null
hypothesis, that is, it can be considered that there is no correlation for the residual. Besides, the Scatter plot
and ACF of residual all indicate that it is a white noise. And the distribution of residual is very close to
normal based on the QQ plot.

We got the model:

VU N = ey — 0.5568¢;_1 — 0.9274e; 50 + 0.5568 x 0.9274 X e;_53 (11)

4.3 Final Results
We finally got the model:

th = mt —|— Nt (]‘2)
my = 0.686m;_1 — 7.11095T (13)
VLN, = ey — 0.5568¢;_1 — 0.9274e; 59 + 0.5568 - 0.9274 - e;_53 (14)

From the picture, the intervention model has achieved very good results

16
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5 Conclusion

The outcome of prediction shows that Intervention Model provides an evident improvement to the original
SARIMA model, with 61.5% decrease of MSE and 25% decrease of MAPE. Intervention Model achieves a good
performance with MAPE equals to 26%, indicating that it is a successful model for predicting air pollution in
India before and after the outbreak of COVID-19 since 2020.

MSE MAPE

SARIMA 1475.4  0.3465

Intervention Model 568.3  0.25931
Improvement 61.5% 25%

Table 6: Evaluation of SARIMA and Intervention Model
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Appendix

#!/usr/bin/env python
# coding: utf-8

# In[1]:

#H####SARIMA Method

# In[1]:

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

import missingno as msno

import numpy as np

# In[2]:

# LI E 1T RIS
pd.options.display.max_columns = None
pd.options.display.max_rows = None
np.set_printoptions(threshold=np.inf)

# In[3]:

df = pd.read_csv('./city day.csv')
df[ 'Date'] = pd.to_datetime(df['Date'])
df.head(10)

# In[4]:

g

# BEH1 column G na
df.isna().sum()

# In[5]:



cities_all = df.pivot_table(values="AQI', index=['Date'],
columns="City")

cities_all=cities_all.add suffix(' AQI")

cities_all.isna().sum()

# Bengaluru_ AQI,Chennai AQI,Delhi_AQI,Hyderabad AQI,Lucknow AQI FIX]/Kix
AL

# H A2, Arel i E india #9516

# In[6]:

msno.matrix(cities_all)

plt.show()

# fRIFILAT HIE IR AT 1 7717
Bengaluru_AQI,Chennai_AQI,Delhi_AQI,Hyderabad AQI,Lucknow_ AQI /F49#F 7 xf
%

# In[7]:

# G

df India = pd.DataFrame()

df_India =

cities all[['Bengaluru_AQI', 'Chennai_ AQI', 'Delhi AQI', 'Hyderabad AQI',"
Lucknow_AQI']]

df India=df_India.resample(rule='W').mean()
print(df_India.isna().sum())

df_India = df_India.interpolate('linear")
df_India['India'] = df_India.mean(axis=1)
print(df_India.isna().sum())

# LBIFIERA T HIE AR IR T B RN E A, XL BT M 7
df India = df_India.dropna()
print(df_India.isna().sum())

# In[8]:



df_India.head()

# In[9]:

# 7 T ESH 26 MR I B IE TE 0 27 B

plt.figure(figsize=(16,9))

plt.title('Origin Data')

plt.plot(df_India[ 'India'], label='India AQI")
plt.grid(color="b", linestyle='--', linewidth=1, alpha=0.3)
plt.legend()

plt.show()

# In[10]:

from statsmodels.tsa.stattools import adfuller

# UL JE /] ADF XT JREHE 0 — - F R P72 5%

dftest = adfuller(df_India[ 'India’],autolag="BIC")
dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-
value', "#Lags Used', 'Number of Observations Used'])
for key,value in dftest[4].items():
dfoutput['Critical Value (%s)'%key] = value

print(dfoutput)
# A LIE PGSR, (HE R

# In[16]:

Rejecting the null hypothesis of a unit root after applying the ADF
test does not imply that the series is stationary in all respects.

The ADF test is devised to detect non-stationarity in the long-term
cycle, i.e. the trend of the series. Non-stationarity in other cycles
are not inspected by this test. As long as the series exhibits a
stationary

trend pattern, sources of non-stationarity such as a changing seasonal
pattern or a switch in the variance of the series will most

likely result in rejecting the null hypothesis of the ADF test.



# In[17]:

# H— [ ACF FIPACF #9/4

# AJLIE I HE T

from statsmodels.graphics.tsaplots import plot_acf

from statsmodels.graphics.tsaplots import plot_pacf

fig, ax = plt.subplots(2,figsize=(16, 9))

ax[@] = plot_acf(df_India['India'], lags=100, ax=ax[0])

ax[1] = plot_pacf(df_India[ 'India'],lags=100, ax=ax[1], method="ywm")
plt.show()

# In[18]:

# SR K772, R Log
df_India['log India'] = df_India[ 'India'].apply(np.log)

# In[19]:

# FHETEHZES TEME TS
BZETE AN — Z AR, P2 058 J5 I I AN 5 i 4 R—A i )5 1 45
AT —HEH
SR, SRR =T VAR AR LB, AT BUGEAT = E Sy, PUOVAE N & Z=11%
Zor NEHE & BB,
B BEHAT RN ZE T . IR HAT H— 250, BAMIH 75 Z M — Ik E 5
Reference:
https://otexts.com/fppcn/stationarity.html
diff season = [(df _India[ 'India'][i+52]-df_India['India'][i]) for i in
range(0,len(df _India[ 'India'])-52)]
diff_log season = [(df_India[ ' 'log India‘'][i+52]-
df_India['log_India'][i])
for i in range(@,len(df India['log India'])-52)]

# ZE T 52 N, PR A 52 1~ None
for i in range(52):

diff season.insert(@,None)

diff_log season.insert(0,None)
# @ 3r— | dataframe



df_India['diff_season'] = diff_season
df_India['diff_log season'] = diff_log_season
# check — | #i#

print(df_India.isna().sum())

df_India.head()

# In[20]:

# ERZITHIEG
plt.figure(figsize=(30,24))

plt.subplot(211)

plt.plot(df_India[ 'India'],label="0Original Data')
#plt.plot(df_India[ 'diff season'], label='diff season')
plt.grid(color="b", linestyle='--', linewidth=1, alpha=0.3)
plt.title('Seasonal Differential Original Data')
plt.ylabel('India_AIQ per week')

plt.legend()

plt.subplot(212)

plt.plot(df_India['log India'],label="'Log Data')
#plt.plot(df_India[ 'diff Llog season'], label='log diff season')
plt.grid(color="b", linestyle='--', linewidth=1, alpha=0.3)
plt.title('Seasonal Differential Log Data')
plt.ylabel('India_AIQ per week')

plt.legend()

# plt.subplot(313)

# plt.plot(df_India[ 'diff season'], label='diff season')

# plt.plot(df_India[ 'diff Llog season'], Llabel="log diff season')
# plt.grid(color="b', Llinestyle='--"', Llinewidth=1, alpha=6.3)

# plt.title('Seasonal Differential ')

# plt.ylabel('India_AIQ per weeR')

# plt.legend()

plt.show()

# B T Llog Z /g ZE G < FRIRE
# In[21]:

# XETTEZE ;T HI40# 1% ADF test



from statsmodels.tsa.stattools import adfuller

print('---ADF test for seasonal differential method---')
dftest = adfuller(df_India['diff_season'].dropna(),autolag="'BIC")
dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-
value', "#Lags Used', 'Number of Observations Used'])
for key,value in dftest[4].items():

dfoutput['Critical Value (%s)'%key] = value

print(dfoutput)

print(r'---ADF test for seasonal differential method (log)---')
dftest = adfuller(df_India[ 'diff_log season'].dropna(),autolag="'BIC")
dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-
value', "#Lags Used', 'Number of Observations Used'])
for key,value in dftest[4].items():

dfoutput['Critical Value (%s)'%key] = value

print(dfoutput)
# WL p HAH TS, P
#

# In[22]:

# H— | ACF F1PACF #7/5

from statsmodels.graphics.tsaplots import plot_acf

from statsmodels.graphics.tsaplots import plot_pacf

fig, ax = plt.subplots(2,figsize=(16, 9))

ax[@0] = plot_acf(df_India[ ' 'diff season'].dropna(), lags=50, ax=ax[@])
ax[1] = plot_pacf(df_India[ 'diff season'].dropna(),lags=50, ax=ax[1],
method="ywm")

plt.show()

# In[23]:

# Log /K

# [H— | ACF F1PACF #7/5

from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.graphics.tsaplots import plot_pacf
fig, ax = plt.subplots(2,figsize=(16, 9))



ax[@] = plot_acf(df_India['diff log season'].dropna(), lags=59,
ax=ax[@])

ax[1] = plot_pacf(df_India[ 'diff_log season'].dropna(),lags=50,
ax=ax[1], method="'ywm")

plt.savefig('log acf pacf.png')

plt.show()

# In[24]:

# G FIEHIAE R, AL — k5
diffl = [(df_India['diff_season'][i+1]-df_India['diff_season'][i]) for
i in range(52,len(df_India['diff_season'])-1)]
diffl_log = [(df_India[ 'diff log season'][i+1]-
df India['diff log season'][i])
for i in range(52,len(df_India['diff_log season'])-1)]

for i in range(53):
diffl.insert(0,None)
diffl log.insert(@,None)

df_India[ 'diffl'] = diffl
df_India['diffl_log'] = diffl_log
df_India

# In[25]:

# H— | ACF F1PACF #7/5

from statsmodels.graphics.tsaplots import plot_acf

from statsmodels.graphics.tsaplots import plot _pacf

fig, ax = plt.subplots(2,figsize=(16, 9))

ax[@0] = plot_acf(df_India['diffl log'].dropna(), lags=120, ax=ax[@])
ax[1] plot _pacf(df_India[ 'diffl log'].dropna(),lags=110, ax=ax[1],
method="ywm")

plt.savefig('log_acf_pacf diff.png',dip=600)
plt.show()

# In[298]:

from pmdarima import auto_arima

# [/ AutoArima 45— FEL



# P 751721 PACF H15 Z LN Il

# Q 7EHIETE ACF 1 Z L1 i
auto_arima(y=df_India[ 'log India'],start_p=1,start P=1,start_g=1,start_
Q=1,

seasonal=True,W=52, stepwise=True).summary()

# In[299]:

# WEXIHEESE

from itertools import product
ps = range(®,3)

d=1

gs = range(o,3)

Ps = range(0,2)

D=1
Qs = range(9,2)
s = 52

parameter = product(ps,qgs,Ps,Qs)
parameter_list = list(parameter)
print(len(parameter_list))

# RIEL(C36 L

# In[300]:

get_ipython().system( 'pip install tqgdm')

# In[301]:

from tqdm import tqdm_notebook

def optimizeSARIMA(parameter list,d,D,s):
results = []
bestaic = float("inf")

for param in tqdm_notebook(parameter list):
try:
model =
sm.tsa.statespace.SARIMAX(df_India[ 'log India'][©:247],
order=(param[@], d,
param[1]),



seasonal_order=(param[2],D,p

aram[3],s)).fit(disp=5)

except:

continue

aic = model.aic

bic = model.bic

hgqic = model.hqgic

results.append([param,aic,bic,hqgic])

results_table
'bic', 'hqic'])
results_table

pd.DataFrame(results, columns=['parameter', 'aic’,

results table.sort_values(by='aic',ascending=True).reset_index(drop=Tru

e)

return results_table

# In[302]:

results _table = optimizeSARIMA(parameter list,d,D,s)

# In[303]:

results_table[ 'mean_eva'] =

results_table[['aic','bic"', 'hgic']].mean(axis=1)
results_table.sort _values(by='mean eva',ascending=True).reset index(dro
p=True)

# In[358]:

# ZH k¥ 1201
import statsmodels.api as sm

# —HEK U seasonal 2 RAG 5 Ny season, XEAE, HrLlEIR—1 error
model=sm.tsa.statespace.SARIMAX(df_India[ 'log India'][©:243],order=(0,
1, 1),seasonal order=(0,1,1,52))

results=model.fit(disp=5)

aic = results.aic

print(aic)

print(results.summary())



#uutt X pdq PDQ 2% [ A1) ACF #1 PACF £ K], Flautoarima FHi#a A/

# In[306]:

df_India[ 'forecast']=results.predict(start=247,end=275,dynamic=True).ap
ply(np.exp)

df_India[['India', 'forecast']].plot(figsize=(12,8))

plt.show()

# In[307]:

# TEE RS

residual = results.predict(start=0,end=246,dynamic=True) -
df_India['log India'][0:247]

x_label = sorted(residual)

y_label
sorted(np.random.normal(np.mean(x_label),np.std(x_label),len(x_label)))
plt.plot(x_label,y label)

line_x = np.arange(np.min(x_label),np.max(x_label),0.01)
plt.plot(line_x,line_x,c="r")

plt.show()

# In[308]:

test = df_India[ 'forecast'][247:275]
true = df_India[ 'India’][247:275]

n = len(test)

mape = 1/n*sum(abs((test-true)/true))
mse = 1/n*sum((test-true)**2)
print(mape)

print(mse)

# In[309]:

df India['forecast'][271:275]

# In[310]:



# B H report X717

test = df_India[ 'forecast'][271:275]
true = df_India[ 'India’][271:275]

n = len(test)

mape = 1/n*sum(abs((test-true)/true))
mse = 1/n*sum((test-true)**2)
print(mape)

print(mse)

# ## T

# In[361]:

df_India[ 'forecast']=results.predict(start="'2019-12-29"',end="2020-06-
28" ,dynamic=True)

df India['forecast exp'] = df_India['forecast'].apply(np.exp)

df India[['India’', 'forecast exp']].plot(figsize=(12,8))

plt.show()

# 2020 4, 3 725 H, HIEIFGGHT R 21 KIg£EE58 4 A11 H, HIEBHRFEE

EREEZEESES H3 H, RIGHIE BRI REE 5. 07 1T, /12X 9] LK

£10 /31 H

# 2021 7, [AIXIE KRG, HIEZHSEIE L 1T TE BRI R AN 7
Yo

#

https://zh.wikipedia.org/wiki/2019%E5%86%A0%E 7%8B%80%E7%97%85%E6%AF%92%

E7%97%85%E5%8D%BO%E5%BA%A6SE7%96 5AB%E6%83%85#2020%E5%B9%B4

#

# [HEF M 3 HHLEHT G, FHHA D, FrelaE Ll 2020-01-01 7 FFHH

# In[362]:

#9x7

train = df_India['2015-04-05':'2020-01-01'] #/X 74 T THHIN 1EHTFEZE

test = df_India['2020-01-02':'2020-06-07"]
forcast = df_India['2020-06-14':'2020-07-05"'] #/ - HlHI 57

# ##t WG TR 1T 2



# In[364]:

import statsmodels.api as sm

# KU seasonal 2ERAG 5 1 52 season, XENE, L EIR—1 error
model=sm.tsa.statespace.SARIMAX(df_India[ 'log India'][©:243],order=(0,
1, 1),seasonal_order=(0,1,1,52))

results_raw=model.fit(disp=5)

aic = results_raw.aic

print(aic)

print(results.summary())

st X pdq PDQ 2% [ A1) ACF #1 PACF £ K], Flautoarima FHia w1/

# In[365]:

# /1] train ZE5 LIEIHE 772 model K fit test ZE4

df India['forecast test']=results raw.predict(start ='2020-01-01"',end =
'2020-06-07"',dynamic=True)

df India['forecast test exp'] = df_India[ 'forecast test'].apply(np.exp)
df_India[['India', 'forecast_test_exp']].plot(figsize=(12,8))

plt.show()

# ## XTI G

H

In[366]:

# T AY: LA A -train model f9fit (4

Z = df India['India'] - df_India[ 'forecast test exp']
Z = 7Z['2020-01-01":'2020-06-07"']

YA

3

In[367]:

# Z JF5IH9 A

plt.figure(figsize=(16,9))

plt.title('Intervention variables')

plt.plot(Z, label="India AQI")

plt.grid(color="b", linestyle='--', linewidth=1, alpha=90.3)
plt.legend()

plt.show()



# In[368]:

# PR f T
from statsmodels.tsa.stattools import adfuller
dftest = adfuller(Z,autolag='BIC")
dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-
value', "#lLags Used', 'Number of Observations Used'])
for key,value in dftest[4].items():
dfoutput['Critical Value (%s)'%key] = value
print(dfoutput)

# In[369]:

# H— ] ACF F1PACF #7/4

from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.graphics.tsaplots import plot_pacf
fig, ax = plt.subplots(2,figsize=(16, 9))

ax[@] = plot_acf(Z, lags=4, ax=ax[9])

ax[1] = plot_pacf(Z,lags=4, ax=ax[1], method="ywm")
plt.show()

# In[371]:

#AJLIZEA AR 1 BG4 MA 1
import statsmodels.api as sm
# —HEF it seasonal LFERAG 5 1N season, XEANE, HrLlEIR—1 error
model train=sm.tsa.statespace.SARIMAX(Z,order=(1, 0,
0),seasonal_order=(0,0,0,0),

enforce_stationarity = True,
enforce_invertibility = True, trend = "c")
results_z=model_trainl.fit(disp=5) #&X NZ4(Z 114 LW
aic = results Z.aic
print(aic)
print(results_Z.summary())

# In[373]:



import statsmodels.api as sm
# — KW seasonal 2ERAG 5 1 5 season, XENE, L LIR—1  error
model train=sm.tsa.statespace.SARIMAX(Z,order=(9, 0,
1),seasonal_order=(0,0,0,0),

enforce_stationarity = True,
enforce_invertibility = True,trend = "c")
results_ZZ=model_train.fit(disp=5) #X "4 E 114 HLW]
aic = results _ZZ.aic
print(aic)
print(results_zz.summary())

# In[374]:

results Z.plot diagnostics(figsize=(15,15))
plt.savefig('residual white noise test.png',dip=600)
plt.show()

# In[375]:

results ZZ.plot diagnostics(figsize=(15,15))
plt.savefig('residual white noise test.png',dip=600)
plt.show()

# ## FFEILSR TR G HIEEE #1675

# In[376]:

df_India['clearn’'] = df_India[ 'India’]

df India['clearn']['2020-01-05":'2020-06-07"'] =

df India['India']['2020-01-05':'2020-06-07"'] - results Z.fittedvalues

#df _India[ 'clearn'][ '2020-01-05':'2020-06-07'] =
df_India[ 'India'][ '26020-01-05':'2020-06-07'] - Z

# In[377]:

Y = df_India['clearn']['2015-04-05":'2020-06-07"]



# In[378]:

plt.figure(figsize=(16,9))

plt.title('Sequence Excluding the Influence Of the Intervention:')
plt.plot(Y, label='India AQI")

plt.grid(color="b", linestyle='--', linewidth=1, alpha=0.3)
plt.legend()

plt.show()

# In[379]:

#- PRt f I
from statsmodels.tsa.stattools import adfuller
dftest = adfuller(Y,autolag='BIC")
dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-
value', '#Lags Used', 'Number of Observations Used'])
for key,value in dftest[4].items():
dfoutput['Critical Value (%s)'%key] = value
print(dfoutput)

# In[380]:

# [H— | ACF F1PACF #7/5

from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.graphics.tsaplots import plot_pacf
fig, ax = plt.subplots(2,figsize=(16, 9))

ax[@] = plot_acf(Y, lags=50, ax=ax[9])

ax[1] = plot_pacf(Y,lags=50, ax=ax[1], method="ywm")
plt.show()

# In[381]:

Y_diff = Y.diff()
Y _diff = Y_diff.diff(52)

# In[382]:



# ZZEHIEG

plt.figure(figsize=(30,24))

plt.subplot(212)

plt.plot(Y_diff,label="Log Data')
#plt.plot(df_India[ 'diff Log season'], label='log diff season')
plt.grid(color="b", linestyle='--', linewidth=1, alpha=0.3)
plt.title('Seasonal Diff and No-seasonal Diff Log Data')
plt.ylabel('India_AIQ per week')

plt.legend()

plt.show()

# In[383]:

# H— ] ACF F1PACF #7/4

from statsmodels.graphics.tsaplots import plot_acf

from statsmodels.graphics.tsaplots import plot_pacf

fig, ax = plt.subplots(2,figsize=(16, 9))

ax[@] = plot_acf(Y_diff.dropna(), lags=120, ax=ax[@0])

ax[1] = plot_pacf(Y_diff.dropna(),lags=96, ax=ax[1], method="ywm")
plt.show()

# In[384]:

log Y = np.log(Y)

# In[385]:

import statsmodels.api as sm
# — Wt seasonal LFERKAG 5 1N season, XEANE, HrLlSIR—1 error
model Y=sm.tsa.statespace.SARIMAX(log Y[©:271],order=(0, 1,
1),seasonal order=(0,1,1,52),

enforce_stationarity = True,
enforce_invertibility = True)
results Y=model Y.fit(disp=5)
aic = results.aic
print(aic)
print(results_Y.summary())

# In[386]:



results_Y.plot diagnostics(figsize=(15,15))
plt.savefig('residual white noise test.png',dip=600)
plt.show()

# In[387]:

#RALLTRX

#Y-- JHESLE - THFEAGT arima model + TF-HH/F5): BlAZHESE(E-train
model /7 fit &

#EN BN IZH] Fittedvalues (fittedvalues = predict dynamic= false

df India['final fitted'] = np.exp(results_Y.fittedvalues)
df_India['final fitted']["2020-01-05":"2020-06-07"] =
np.exp(results_Y.fittedvalues)["2020-01-05":"2020-06-07"] +
results_Z.fittedvalues

# A

# In[388]:

plt.figure(figsize=(16,9))

plt.title('Y")

plt.plot(df_India['India'], label='India AQI")
plt.plot(df_India['final fitted']["2020-01-05":"2020-06-07"],
label="Intervention Model')

plt.plot(df India['forecast'], label='Model without Intervention')
#plt.plot(df _India[ 'forecast exp'], label='forecast')
plt.grid(color="b", linestyle='--', linewidth=1, alpha=0.3)
plt.legend()

plt.show()

# ## TR R
# In[390]:
XX = results Z.predict(start = "2020-06-14",end = "2020-07-

05" ,dynamic=True) + np.exp(results_Y.predict(start = "2020-06-14",end =
"2020-07-05",dynamic=True))



# In[392]:

plt.figure(figsize=(16,9))

plt.title('X")

plt.plot(XX, label='forecast")
plt.plot(df_India['India']['2020-01-02':'2020-07-05"'],
label="India_AQI")

#plt.plot(df_India[ 'forecast']['2020-06-14":'2020-07-05"],
Label="forecast")

plt.grid(color="b", linestyle='--', linewidth=1, alpha=0.3)
plt.legend()

plt.show()

# In[393]:

test = XX

true = df_India["India"]['2020-06-14":'2020-07-05"]
n = len(test)

mape = 1/n*sum(abs((test-true)/true))

mse = 1/n*sum((test-true)**2)

print(mape)

print(mse)





