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Abstract. In this study, we conduct a comprehensive analysis of Google
stock (GOOGL) daily returns using the Yahoo Finance dataset. The
dataset is preprocessed and partitioned into past and future segments
in a 3:1 ratio, with various statistical methods applied, such as daily
return calculations, autocorrelation function (ACF), partial autocorre-
lation function (PACF), and Dickey-Fuller stationarity testing. By con-
structing two Bayes detectors based on Logistic and Gaussian distribu-
tions and incorporating association rules, we develop investment strate-
gies aimed at limiting trading frequency and reducing transaction costs.
We assess the effectiveness of these strategies through simulation, taking
into account factors such as risk-free interest, greed, efficient frontier,
and adaptive greed. Overall, this study offers valuable insights into the
daily returns of GOOGL and the potential for implementing profitable
investment strategies.
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1 Data Preprocessing

For the data collecting part, we choose Google [1] stock from Yahoo Finance
with 6000 days in Yahoo Finance as the data source. Then we define today t = 0
as 2018-08-31 to split its closing-price time series S(t) into two parts, ”past”
and ”future”, where the length ratio of the “past” {S(t)|t ≤ 0} to the “future”
{S(t)|t ≥ 0} is 3 : 1.

1.1 Daily Return

The daily return X(t) of this stock is defined as follows:

X(t) = ln

[
S(t)

S(t− 1)

]
(1)

We illustrate S(t) and its daily return rate in Fig. 1 and Fig. 2 respectively. The
red dashed line represents the boundary between ”past” and ”future.”
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Fig. 1: Stock price S(t) versus time t

Fig. 2: Daily return X(t) versus time t

1.2 Autocorrelation Function

We plot the autocorrelation function and the partial autocorrelation function of
X(t) in Fig. 3 and Fig. 4 respectively.

1.3 Dickey-Fuller Test

Moreover, we apply the Augmented Dickey-Fuller (ADF) test to the daily return
date X(t) to determine whether our time series is stationary or not. And we get,

ADF test statistic: -29.5458
P-value: 0.0000

Since P-value < 0.05, the null hypothesis is rejected. Thus, our time series is
stationary.
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Fig. 3: Autocorrelation function of X(t)

Fig. 4: Partial Autocorrelation function of X(t)

1.4 Digitization

We also digitize X(t) as Y (t) with three alphabets, viz. D for “down”, U for
“up”, and H for “hold”:

Y (t) =

D |X(t)| < ϵ
U |X(t)| > ϵ
H otherwise

(2)

To accurately digitizeX(t) into Y (t), it is crucial to select an appropriate positive
constant value ϵ. Determining a suitable value for ϵ holds great significance,
as it dictates the resolution of the digitization process. In the event that ϵ is
excessively small, numerous minor fluctuations in X(t) may be classified under
the H category, thereby resulting in information loss. Conversely, if ϵ is overly
large, it may cause the omission of several substantial alterations in X(t), once
again leading to the loss of vital information.

Especially, We use the experience equation ϵ = 0.28σx to compute ϵ where
σx is the standard deviation of X(t).The digitization result of ”past” is shown
as,

Epsilon: 0.0054
The proportion of U in past part: 35.34%
The proportion of D in past part: 29.94%
The proportion of H in past part: 34.72%
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2 Cumulative Distribution Function

Considering the daily return X(t), our objective is to predict its value X(t+ 1)
for the subsequent day. Nonetheless, a quantitative prediction proves to be overly
ambitious; instead, it is more pragmatic to qualitatively predict Y (t + 1). We
shall primarily concentrate on Y (t+1) = U and Y (t+1) = D, which correspond
to robust bullish and bearish markets, respectively.

The conditional Cumulative Distribution Function (CDF) of X is illustrated
in Fig. 5, given that Y will transition to U one day later. This is denoted as
FU(x) ≡ CDF[X(t) = x | Y (t+ 1) = U].

In a similar fashion, we present the plot for FD(x) ≡ CDF[X(t) = x | Y (t+
1) = D] in Fig. 6.

Fig. 5: Conditional CDFs of X(t) given Y (t+ 1) = U in Next Day

Fig. 6: Conditional CDFs of X(t) given Y (t+ 1) = D in Next Day

3 Probability Density Function

Subsequently, our aim is to derive the corresponding Probability Density Func-
tions (PDFs) denoted as fU(x) ≡ PDF[X(t) = x | Y (t + 1) = U] and fD(x) ≡
PDF[X(t) = x | Y (t+ 1) = D].
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3.1 Logistic distribution

On one hand, fit FU(x) and FD(x) with a logistic function

L(x) =
1

1 + exp [−b (x− x∗)]
(3)

where b and x∗ are the fitting parameters. By fitting, we can obtain the value of
b and x∗ for FU(x) and FD(x) as follows:

– The parameters of the logistic function with digit U: b=118.2856, x*=0.0012
– The parameters of the logistic function with digit D: b=113.4866, x*=0.0005

Fig. 7: Fitted with logistic functions

Subsequently, the fitted logistic functions are illustrated in Fig. 7. The deriva-
tives of the results, namely L′

U(x) and L′
D(x), provide estimations of the desired

PDFs. The derivative of the logistic function can be formulated as follows:

L′(x) = bL(x)(1− L(x)) (4)

Following this, the estimated PDFs ofX(t), given Y (t+1) = U and Y (t+1) = D,
are depicted in Fig. 8.

Fig. 8: L
′

U (x) and L
′

D(x)
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3.2 Gaussian distribution

On the other hand, I measure the means µ and the variances σ2 of the data
{X(t) = x | Y (t + 1) = U} and {X(t) = x | Y (t + 1) = D} in order to directly
estimate fU(x) and fD(x) with a Gaussian distribution

g(x) =
1√
2πσ2

exp

[
− (x− µ)2

2σ2

]
.

By computation, we can get the value of µ and σ for gU(x) and gD(x) as follows:

– The parameters of Gaussian function with digit U: mu=0.0014, var=0.0004

– The parameters of Gaussian function with digit D: mu=0.0005, var=0.0004

The outcomes gU(x) and gD(x) are illustrated in Fig. 9.

Fig. 9: gU (x) and gD(x)

4 Bayes Detector

We proceed to construct a Bayes detector utilizing the PDFs to predict Y (t+1)
upon observing X(t). Formally, we select the hypothesis ” HU : Y (t+ 1) = U ”
as the null hypothesis and ” HD : Y (t+ 1) = D ” as the alternative hypothesis.

4.1 Prior Probabilities of Hypotheses

Calculate the probabilities P [Y (t + 1) = U] and P [Y (t + 1) = D]. These prob-
abilities will serve as the prior probabilities for the respective hypotheses. The
outcome can be presented as follows:

– The prior probability of digit U is 0.353241

– The prior probability of digit D is 0.299462
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4.2 Logistic Detector

In this segment, we will construct the detector using the logistic PDFs L′
U(x)

and L′
D(x). We establish that x ∈ (x1, x2) favors the null hypothesis, while

x < x1 or x > x2 favors the alternative hypothesis. To construct the detector, it
is necessary to solve the subsequent equation:

P [Y (t+ 1) = U | X(t) = x] = P [Y (t+ 1) = D | X(t) = x] (5)

For the logistic PDFs, the equation can be expressed as follows:

L
′

U (x)P [Y (t+ 1) = U ] = L
′

D(x)P [Y (t+ 1) = D] (6)

By solving above equation, we can get the value of x1 and x2 as follows:

– The value of x1 for Logistic detector is -0.0286
– The value of x2 for Logistic detector is 0.0605

Following this, we plot x = x1 and x = x2 alongside the graph of L′
U(x) and

L′
D(x) in Fig. 10.

Fig. 10: The Detector with the Logistic PDFs

4.3 Gaussian Detector

We reiterate the previous step utilizing the Gaussian PDFs gU(x) and gD(x).
To obtain the boundary of the Gaussian detector, it is necessary to solve the
subsequent equation:

gU (x)P [Y (t+ 1) = U ] = gD(x)P [Y (t+ 1) = D] (7)

By solving the above equation, we can get the value of x1 and x2 as follows:
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– The value of x1 for Gaussian detector is -0.0401
– The value of x2 for Gaussian detector is 0.0726

Subsequently, we plot x = x1 and x = x2 alongside the graph of gU(x) and gD(x)
in Fig. 11.

Fig. 11: The Detector with the Gaussian PDFs

5 Association Rule

While it is possible to consistently adhere to the Bayes detector and trade based
on its recommendations, this approach would result in an excessive frequency of
trading, leading to substantial losses due to transaction costs. As a result, we
implement additional association rules to restrict the frequency of trading: we
will only engage in trading when both the detector and the rules advocate for
it. The general form of a k-day rule can be expressed as follows:

Rk
y : {Y (t− k + 1), Y (t− k + 2), . . . , Y (t)} → Y (t+ 1) = y (8)

In this context, we opt for the Rule Power Factor (RPF) as the initial rule
assessment method, which is defined as follows:

rp = spc
2
p (9)

Here, sp represents the past support of the rule, while cp signifies the past con-
fidence of the rule. The past support is defined as the proportion of instances
where the rule was satisfied in the past. Similarly, past confidence is defined as
the percentage of occurrences in which the rule was satisfied and the prediction
was accurate in the past. To prevent the repetition of rules for distinct predic-
tions, we opt for past confidence cp as the secondary rule assessment method.
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5.1 1-day Rule

Extract the optimal 1-day ”upward rule” R1
U and ”downward rule” R1

D. The
outcome can be presented as follows:

– The best rule for 1-day up is U with RPF: 0.3644
– The best rule for 1-day up is U with confidence: 0.3699
– The best rule for 1-day down is U with RPF: 0.3204
– The best rule for 1-day down is D with confidence: 0.3198

As the rule for 1-day downward movement is identical to the rule for 1-
day upward movement when using RPF as the assessment method, we opt for
confidence as the rule assessment approach. Consequently, we identify the best
1-day upward rule R1

U as U and the best 1-day downward rule R1
D as D.

5.2 5-day Rule

Subsequently, we reiterate the previous step to determine the two optimal 5-day
rules R5

U and R5
D. The outcome can be presented as follows:

– The best rule for 5-day up is HHDHH with RPF: 0.1277
– The best rule for 5-day up is HUDDD with confidence: 0.8571
– The best rule for 5-day down is UDUHH with RPF: 0.1241
– The best rule for 5-day down is UHDUD with confidence: 1.0000

Hence, by employing the RPF as the assessment method, we identify the
best 5-day upward rule R5

U as HHDHH and the best 5-day downward rule R5
D

as UDUHH.

6 Portfolio Management

Now that the preparation is complete, we can proceed to invest in the stock to
evaluate the effectiveness of the Bayes detectors and association rules.

Let M(t) represent the amount of money and N(t) be the number of shares
at the end of day t. As the portfolio consists solely of money and stock, its value
is defined by the following equation:

V (t) = M(t) +N(t)× S(t) (10)

We initially set the portfolio to contain M(0) = 100, 000 units (in the cur-
rency relevant to the data) and N(0) = 0 shares. We then commence trading at
t = 1 in accordance with the following rules:

– If the Bayes detector predicts Y (t + 1) = U and the antecedent of the best
k-day upward rule Rk

U is observed on day t, purchase shares according to the
following update rules:{

M(t)←M(t)−m
N(t)← N(t) +m/S(t)

for m = γM(t) (11)
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– If the Bayes detector predicts Y (t + 1) = D and the antecedent of the best
k-day downward rule Rk

D is observed on day t, sell shares according to the
following update rules:{

M(t)←M(t) + nS(t)
N(t)← N(t)− n

for n = γN(t) (12)

The parameter γ ∈ (0, 1) quantifies the trader’s ”greed.” A greedier trader
aims for higher earnings and, therefore, trades more per transaction.

For simplicity, we assume that M(t) and N(t) are real numbers with infinite
precision, implying that there are no smallest units per transaction. This market
model also unrealistically assumes that a stock’s closing price for a day represents
its price throughout the entire day and limits the trader to a maximum of one
trade per day.

6.1 1-day Rule

We can now plot the portfolio performances for the two Bayes detectors obtained
in Section 4, using k = 1 and γ0 = 0.1, as shown in Fig. 12. Upon examining
Fig. 12, it is evident that the Gaussian detector outperforms the Logistic detector
when applying the 1-day rule.

Fig. 12: Performances of portfolios with 1-day Rule

6.2 5-day Rule

Now, we can plot the portfolio performances for the two Bayes detectors obtained
in Section 4, using k = 5 and γ0 = 0.1, as depicted in Fig. 13.
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Fig. 13: Performances of portfolios with 5-day Rule

Upon examining Fig. 13, it becomes apparent that the portfolio performance
of the Gaussian detector is equal to that of the Logistic detector when applying
the 5-day rule. In fact, when using the 5-day rule, both detectors executed 7
identical transactions. The transaction history can be summarized as follows:

– Transaction on day 116: Buy 1795.65 shares at price 55.69
– Transaction on day 574: Buy 1010.23 shares at price 89.09
– Transaction on day 577: Buy 918.89 shares at price 88.15
– Transaction on day 746: Buy 532.45 shares at price 136.91
– Transaction on day 758: Buy 450.87 shares at price 145.52
– Transaction on day 841: Buy 408.88 shares at price 144.42
– Transaction on day 844: Buy 387.90 shares at price 137.00

6.3 Comparison

Investment portfolios are assessed utilizing four key metrics: mean, variance,
minimum, and maximum values. The obtained results are presented as follows:

Table 1: Performance of Different Rules and Detectors
Rule Detector Mean Variance Min Max

1-day Logistic 1,445,213 163,905,453,432 880,440 2,256,585
1-day Gaussian 1,534,026 218,417,697,685 873,949 2,485,364
5-day Logistic 1,076,672 8,309,147,774 937,899 1,300,042
5-day Gaussian 1,076,672 8,309,147,774 937,899 1,300,042

Upon examining the results, it becomes apparent that the portfolio utilizing
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the Gaussian detector outperforms the portfolio with the Logistic detector when
the 1-day rule is applied. Consequently, the Gaussian detector will be employed
exclusively in subsequent sections of this study.

Additionally, it is worth noting that the portfolios implementing the 1-day
rule demonstrate significantly better performance compared to those following
the 5-day rule. This observation may be attributed to the increased volatility of
stock prices over shorter timeframes, where more frequent transactions have the
potential to yield higher profits.

7 Transaction Cost

Markets typically impose certain execution fees on transactions. Consequently,
we adjust the buying scheme from Eq. 11 to Eq. 13 and the selling scheme
from Eq. 12 to Eq. 14 by incorporating a tax parameter, denoted as ξ. This
modification aims to account for the plausible suppression of trading frequency
due to transaction costs.{

M(t)←M(t)−m
N(t)← N(t) + (1− ξ)m/S(t)

for m = γM(t) (13)

{
M(t)←M(t) + (1− ξ)nS(t)
N(t)← N(t)− n

for n = γN(t) (14)

7.1 Comparison with different k-day rules

The resulting portfolio values, denoted as V 1(t; ξ) with k = 1 and V 5(t; ξ) with
k = 5, are depicted in Fig. 14.

Fig. 14: Performances of portfolios with different k-day rules
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7.2 Comparison with different tax rates

The resultant values of V 1(t; ξ) and V 5(t; ξ) are plotted in Fig. 15 for three
distinct tax rates: ξ = 0.1%, 0.2%, and 0.5%

Fig. 15: Performances of portfolios with different tax rates

The number of transactions in each case is as follows:

Table 2: Number of Transactions for Different Cases
k ξ Number of Transactions

1 0.1% 468
5 0.1% 7
1 0.2% 468
5 0.2% 7
1 0.5% 468
5 0.5% 7

Upon examining Fig. 15, it becomes evident that the portfolio implementing the
1-day rule outperforms the portfolio adhering to the 5-day rule. Consequently,
the 1-day rule will be employed exclusively in the subsequent sections of this
study.
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8 Risk-Free Interest

We further assume that M(t) grows without risk, as the trader has deposited
their funds in a bank. Consequently, at the start of each day, we first update the
following:

M(t)←M(t)× (1 + r) (15)

Here, r represents the daily interest rate. In this section, we initially set the
parameters as r = 0.001%, ξ = 0.2%, and γ = γ0.

8.1 Trade with Risk-Free Interest

The resultant portfolio’s value V (t; r) is shown in Fig 16.

Fig. 16: Performances of portfolios with risk-free interest

8.2 Ratio Compared to Benchmark

If the trader does not trade at all, the portfolio’s value reduces to

Vb(t; r) = M(0)× (1 + r)t (16)

which can serve as the portfolio’s benchmark value. We plot the ratio ρ(t; r) ≡
V (t; r)/Vb(t; r) in Fig. 17.
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Fig. 17: Ratio of portfolio’s value to benchmark value

8.3 Comparison with Different Interest Rates

Repeat the experiment with r = 0.005% and 0.01%, whereas Section 7 essentially
uses r = 0 and plot the ratio ρ(t; r) in Fig. 18. Upon examining Fig. 18, it

Fig. 18: Performances of portfolios with different free-interest rates

becomes evident that the portfolio with r = 0% outperforms those with r =
0.001%, r = 0.005%, and r = 0.01%. This observation concludes that ρ(t; r)
exhibits a decreasing trend as the value of r increases.
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9 Greed

Finally, investigate the effect of γ. Consider ξ = 0.2% and r = 0.001%.

9.1 Comparison with Different Greeds

In Fig. 19, we present a visual representation of the portfolio value V (t; γ),
resulting from trades executed for twenty distinct values of γ, including γ ∈
0.1, 0.3, 0.5, 0.7, 0.9. 19.

Fig. 19: Performances of portfolios with Greeds

9.2 The Effect of Greed

Fig. 20 presents a comprehensive visualization of the portfolio’s final values
V (max t; γ), their peak values maxt V (t; γ), and their time-averaged values ⟨V (t; γ)⟩
in relation to the parameter γ. A thorough examination of Fig. 20 reveals that
V (max t; γ), maxt V (t; γ), and ⟨V (t; γ)⟩ all demonstrate a diminishing trend as γ
increases. Based on these observations, we can infer that an excessive emphasis
on immediate gains, as characterized by a higher γ value, may adversely impact
the overall performance of the trading strategy.

10 Efficient Frontier

Although employingm = γM(t) and n = γN(t) for each transaction may appear
somewhat arbitrary, this approach can be justified by considering the efficient
frontier, thereby generalizing the investment scheme.
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Fig. 20: V (max t; γ), maxt V (t; γ) and ⟨V (t; γ)⟩ versus γ

Let u, u1, and u2 represent the expected returns of the portfolio, M(t), and
S(t). Since M(t) is risk-free, u1 ≤ u2 should hold in a stable market; otherwise,
risky investments would not be rewarded. Consequently, both the risk and return
of a portfolio are minimized when it consists solely of money, and maximized
when it consists exclusively of the stock.

Immediately prior to a transaction on day t, the portfolio’s return amounts to
u = Au1+(1−A)u2, where A = M(t)/V (t) is the proportion of money. If a buy
signal is observed, an investor spends m̃ = γUM(t) to purchase (1 − ξ)m̃/S(t)
shares, altering u to uU = AUu1 + (1 − AU)u2. Conversely, if a sell signal is
observed, an investor sells ñ = γDN(t) shares to earn (1− ξ)ñS(t), modifying u
to uD = ADu1 + (1−AD)u2.

In this context, the investor adjusts their greed level to either γU or γD for
each transaction, with both levels depending on the investor’s intrinsic greed,
γ ∈ (0, 1). A greedier investor buys more when making a purchase, thus pushing
their portfolio further towards a stock-only portfolio along the efficient frontier.

This relationship can be expressed as

{
γ → 1⇒ uU → u2

γ → 0⇒ uU → u
, and can be modeled

with the following equation:

uU = γ(u2 − u) + u (17)

Similarly, a greedier investor sells more when selling, thereby pushing their port-
folio further towards a money-only portfolio. This behavior can be described by:

uD = γ(u1 − u) + u (18)
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10.1 Formula Derivation of uU and uD

First, we aim to express AU in terms of γU , V (t),M(t), ξ. Based on the previous
discussion, we have:

m̃ = γUM(t)

V (t) = M(t) +N(t)S(t)

M(t+ 1) = (1− γU )M(t)

N(t+ 1) = N(t) + (1− ξ)m̃/S(t)

From these equations, we can derive the formula for U(t+ 1):

V (t+ 1) = M(t+ 1) +N(t+ 1)S(t)

= (1− γU )M(t) +N(t)S(t) + (1− ξ)γUM(t)

= V (t)− ξγUM(t)

Then, we obtain the formula for AU :

AU = M(t+ 1)/V (t+ 1) =
(1− γU )M(t)

V (t)− ξγUM(t)
(19)

Similarly, for AD, we have:

ñ = γDN(t)

V (t) = M(t) +N(t)S(t)

N(t+ 1) = (1− γD)N(t)

M(t+ 1) = M(t) + (1− ξ)γDN(t)S(t)

V (t+ 1) = M(t+ 1) +N(t+ 1)S(t)

= V (t)− ξγDN(t)S(t)

Then, we can derive the formula for U(t+ 1):

V (t+ 1) = M(t+ 1) +N(t+ 1)S(t)

= V (t)− ξγDN(t)S(t)

Next, we derive the formula for 1−AD:

1−AD = N(t+ 1)S(t)/V (t+ 1) =
(1− γD)N(t)S(t)

V (t)− ξγDN(t)S(t)
(20)

Second, we express AU/A in terms of γ by solving the following equations:{
AUu1 + (1−Au)u2 = γ (u2 − u) + u
u = Au1 + (1−A)u2

From these equations, we derive the formula:
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Au

A
= 1− γ (21)

Similarly, by solving the following equations:{
ADu1 + (1−AD)u2 = γ (u1 − u) + u
u = Au1 + (1−A)u2

We obtain the formula:
1−AD

1−A
= 1− γ (22)

Finally, we derive the formula for γU by solving Eq. 19 and Eq. 21, and the
formula for γD by solving equations Eq. 20 and Eq. 22:

γU =
γV (t)

V (t)− ξM(t)(1− γ)
(23)

γD =
γV (t)

V (t)− ξN(t)S(t)(1− γ)
(24)

10.2 Comparison of Efficient Frontier to Usual Investment Scheme

It turns out that γ = γU = γD for a small tax ξ. This justifies trading with
m = γM(t) and n = γN(t). Now consider an absurdly heavy tax ξ = 50% with
r = 0.001% and γ = γ0. We plot the resultant portfolio’s value V (t) when trade
with m and n as usual and the resultant portfolio’s value Ṽ (t) when trading
with m̃ and ñ in Fig. 21. By observing Fig. 21, we can see that the usual scheme

Fig. 21: Comparison of Efficient Frontier to Usual Investment Scheme

performs better than the efficient frontier scheme with the given parameters.
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11 Adaptive Greed

Thus far, our analysis has employed a constant greed factor throughout the
trading process. We now propose to examine an adaptive greed strategy that
dynamically responds to market conditions. The forthcoming investigation will
utilize the framework delineated in Sections 6 to 8, deviating from the previously
derived approach.

11.1 Posterior analysis

We have obtained twenty portfolios {V (t; γ)} for twenty choices of γ in Section
9 using ξ = 0.2% and r = 0.001%. Then we plot

γ∗
i = argmax

γ

[
V (ti; γ)

V (ti − 1; γ)

]
against i in Fig. 22, where the i th transaction happens at t = ti.

Fig. 22: Plot of γ∗
i against i

Upon analyzing Fig. 22, it becomes apparent that the optimal greed factor,
γi, exhibits a positive correlation with the rising stock price and a negative cor-
relation with the falling stock price. This observation aligns with the established
investment principle of increasing share purchases when the stock price is on an
upward trajectory and intensifying sales when the stock price is experiencing a
decline. Subsequently, we proceed to execute trades with the adaptive greed fac-
tor, γ = γi, during the i-th transaction. A comparison of the resultant portfolio
values, V ∗(t) and V (t), is presented in Fig. 23.
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Fig. 23: Comparison of V ∗(t) and V (t)

The plot in Fig. 23 facilitates an evaluation of the performance of the adaptive
greed strategy relative to the constant greed strategy. By scrutinizing the results,
we can ascertain the efficacy of the adaptive greed approach in optimizing the
portfolio’s value under a diverse range of market conditions.

11.2 Prior analysis

Practically, γ∗
i is useless because it is obtained a posteriori, while we need to

decide γ before trading. Since it is hard to choose its value from a real interval
(0, 1), we simplify the problem to choosing between two values {γA, γC} : before
each investment, we decide whether it is better to use an aggressive greed γA or
a conservative greed γC .

Consider a scenario where Alice, Bob, and Charlie each have their respective
bankers. Alice’s investment strategy is characterized by a greed factor of γA =
0.7, while Charlie’s strategy is marked by a greed factor of γC = 0.3. Bob aims
to establish an equilibrium between these divergent approaches by determining
the appropriate instances to invest with γB = γA and when to allocate funds
with γB = γC .

In order to select an adaptive greed factor through technical analysis, one
possible method involves employing a moving average crossover strategy. This
technique entails the utilization of two distinct moving averages, characterized
by a shorter and a longer time period, respectively. A bullish signal is generated
when the shorter moving average surpasses the longer moving average, prompt-
ing an increase in the greed factor to γA = 0.7. Conversely, a bearish signal
arises when the shorter moving average falls below the longer moving average,
necessitating a reduction in the greed factor to γC = 0.3.

In the present analysis, the shorter time period is designated as a 10-day
interval, while the longer time period encompasses a span of 60 days. When
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the portfolio series’ length falls short of 60 days, a conservative greed factor of
γC = 0.3 is adopted to accommodate the limited data availability.

Execute trades for Alice, Bob, and Charlie with transaction costs ξ = 0.2%
and interest rate r = 0.001%. Depict the respective portfolio values VA(t), VB(t),
and VC(t) in Fig. 24.

Upon examination of Fig. 24, it becomes evident that Bob’s portfolio value
outperforms those of Alice and Charlie, indicating the effectiveness of the moving
average crossover strategy in optimizing investment outcomes.

Fig. 24: Performance of Alice, Bob, and Charlie’s portfolios
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